त्रिकोणमिति : महत्वपूर्ण सूत्र
योग सूत्र
1. Sin(A+B) = SinACosB+CosASinB
2. Sin(A-B) = SinACosB-CosASinB
3. Cos(A+B) = CosACosB-SinASinB
4. Cos(A-B) = CosACosB+SinASinB
अन्तर सूत्र
1. tan(A+B) = tanA+tanB/1-tanAtanB
2. tan(A-B) = tanA-tanB/1+tanAtanB
C-D सूत्र
1. SinC+SinD = 2Sin(C+D/2) Cos(C-D/2)
2. SinC-SinD = 2Cos(C+D/2) Sin(C-D/2)
3. CosC+CosD = 2Cos(C+D/2) Cos(C-D/2)
4. CosC-CosD = 2Sin(C+D/2) Sin(D-C/2)
5. CosC-CosD = -2Sin(C+D/2) Sin(C-D/2)
रूपांतरण सूत्र
1. 2SinACosB = Sin(A+B)+Sin(A-B)
2. 2CosASinB = Sin(A+B)-Sin(A-B)
3. 2CosACosB = Cos(A+B)+Cos(A-B)
4. 2SinASinB = Cos(A-B)-Cos(A+B)
द्विक कोण सूत्र
1. Sin2A = 2SinACosA
2. Cos2A = Cos²A-Sin²A = 2Cos²-1 = 1-2Sin²A
3. tan2A = 2tanA/1-tan²A
4. Sin2A = 2tanA/1+tan²A
5. Cos2A = 1-tan²A/1+tan²A
विशिष्ट सूत्र
1. Sin(A+B)Sin(A-B) = Sin²A-Sin²B
= Cos²B-Cos²A
2. Cos(A+B)Cos(A-B) = Cos²A-Sin²B = Cos²B-Sin²A
त्रिक कोण सूत्र
1. Sin3A = 3SinA-4Sin³A
2. Cos3A = 4Cos³A-3CosA
3. tan3A = 3tanA-tan³A/1-3tan²A
महत्वपूर्ण सर्वसमिकाएं
1. Sin²θ+Cos²θ = 1
2. Sin²θ = 1-Cos²θ
3. Cos²θ = 1-Sin²θ
4. 1+tan²θ = Sec²θ
5. Sec²θ-tan²θ = 1
6. tan²θ = Sec²θ-1
7. 1+Cot²θ = Cosec²θ
8. Cosec²θ-Cot²θ = 1
9 Cot²θ = Cosec²θ-1
0 Comments